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Abstract: It is expected that the projected increased usage of implantable devices in 

medicine will result in a natural rise in the number of infections related to these cases. 

Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. 

Suppression of the local peri-implant immune response is an important contributory factor. 

Substantial avascular scar tissue encountered during revision joint replacement surgery 

places these cases at an especially high risk of periprosthetic joint infection. A critical 

pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of 

biomaterial-associated infections should be concurrently focused on at least two targets: 

inhibition of biofilm formation and minimizing local immune response suppression. 

Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic 

joint infection is reviewed. Several surface treatment modalities have been proposed. 

Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches 

are discussed. The ultimate anti-infective surface should be “smart” and responsive to even 

the lowest bacterial load. While research in this field is promising, there appears to be  

a great discrepancy between proposed and clinically implemented strategies, and there is 

urgent need for translational science focusing on this topic. 

Keywords: orthopaedic; biomaterial-associated infection; prosthetic joint infection;  

anti-adhesive; antibacterial; surface treatment; silver; antibacterial proteins; smart surfaces 

 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 13850 

 

 

1. Introduction 

Biomaterial-associated infection is a disastrous complication of modern orthopaedic surgery that 

often leads to prolonged patient pain and functional losses. While international efforts to minimize the 

risk of these infections are underway [1], orthopaedic surgical site infections (SSIs) continue to occur 

in staggering numbers. Current estimates suggest that up to 2.5% of primary hip and knee arthroplasties 

and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJI) [2]. 

According to some authors not only are these numbers underestimates but they are also on the rise [3]. 

Staphylococcus aureus is the leading cause of both the SSIs and PJIs, and the prevalence of 

methicillin-resistant S. aureus (MRSA) SSI and PJI is increasing, especially in the United States [4]. 

Generally, deep infection leads to implant removal and ensuing increased morbidity and even mortality [5]. 

Moreover, therapy of PJI is associated with enormous costs [6]. 

Although methods developed for perioperative infection prevention such as antibiotic prophylaxis 

have been shown to be effective in SSI reduction, most assume a uniform intraoperative environment [7]. 

As the majority of operating rooms are contaminated within the first few hours of service [8,9], most 

surgeries are not performed in a bacterial-free environment. Within a certain operating room all 

patients are exposed to the same environment. The question therefore arises as to why some patients  

go on to have infections and others do not. This question has recently been re-examined; it is still 

premature, however, to give strict recommendations for clinical practice [10–13]. Even though modifiable 

SSI risk factors have been identified and well-described [7,14,15] it is not often possible to avoid 

operating on patients who are not “optimized”. 

Several recent scientific forums have recommended that researchers should focus on the development 

of effective antibacterial surfaces that prevent bacterial adhesion, colonisation and proliferation into 

the surrounding tissues [1]. The aim of this review is to summarize current knowledge in this field  

with particular emphasis on technologies that could be suitable for prevention of PJI in total joint 

arthroplasty. Similar technologies could be employed for prevention of SSIs in other orthopaedic cases 

involving implants such as plates, intramedullary nails, and external fixators. 

1.1. How to Win the Race for the Surface? 

Gristina proposed the concept of a “race for the surface” whereby host and bacterial cells compete 

in determining the ultimate fate of the implant [16]. Accordingly, when host cells colonize the implant 

surface first the probability of attachment of bacterial cells is very low and vice versa. This concept has 

stimulated technological and biomaterial progress while emphasizing the role of implant biocompatibility 

and tissue-integration. This model, however, can be criticized for its simplicity (simple rules, 

assumptions etc.), static conditions, and low capacity for prediction of PJI (inability to help with 

quantification of clinical uncertainty). Specifically, it is not able to interpret a wide zone often found 

between basic polar items, i.e., complete host cell versus bacterial cell coverage of an implant surface. 

The most destabilizing factor is the basic yet highly successful survival strategy of bacteria in general: 

their ability to adhere and survive on virtually all natural and synthetic surfaces [17,18]. Bacterial cell 

membranes contain various types of adhesins for a wide range of biomaterial surface receptor sites. 

Environmental and surface characteristics of a biomaterial such as surface roughness, hydrophobicity, 
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and electrostatic charge play only conditional roles [19]. A reservoir of receptors for bacterial adhesive 

ligands mediating adhesion of free-floating bacteria to the surface of the biomaterial offers a conditional 

protein film covering an implant immediately after its placement into the host body [20–23]. Complement 

and albumin are considered the main components of this conditional protein film [24]. However, the 

protein spectrum extends much beyond complement and albumin and depends at least in part on a 

particular type of biomaterial attracting an exact set of host proteins and lipids [25–27]. Conceptually,  

the process of bacterial adhesion can be divided into two basic phases: reversible and irreversible 

(Figure 1) [28,29]. The former is mechanically and biologically less stable than the latter. The explanation 

lies in part on the origin of nonspecific interactions between implant surface characteristics and 

bacterial surface adhesins. The second phase is mediated by molecular and cellular interactions closely 

associated with expression of biofilm specific gene clusters in reversibly attached bacteria [30].  

At least four distinct classes of surface proteins have been identified to participate on firm adhesion of 

S. aureus micro-colonies to a biomaterial and to each other [31]. An adhesion phase is followed by 

gene expression for secretion of protective slime. This process makes bacteria extremely resistant  

to both host immune system and antibiotic diffusion [29,32]. The transition between reversible and 

irreversible phases of biofilm formation coupled with phenotypical change is the last window of 

opportunity for clinically reasonable preventative measures. 

Figure 1. Schematic illustration of the process of biomaterial colonization starting from 

individual bacteria adhesion across micro-colonies towards formation and maturation of 

biofilm (1); Bacteria cannot activate the biofilm-related phenotype before they firmly 

attach to the substrate. After attachment and change in the phenotype they are able to produce 

the matrix of extracellular polymeric substances that protect them against host immune 

response and antibiotics. If host cell achieves irreversible attachments on the biomaterial 

surface first (i.e., if they are the winner) it is difficult for bacterial cells to start with biofilm 

formation (2); The period before firm attachment and phenotypic change is therefore  

the window of opportunity for almost all antibiofilm strategies (3). During that time these 

strategies compete with bacteria for implant surface attachment and microenvironment. 

ATB = antibiotics. 
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On the host site, the details of tissue integration of a biomaterial are still poorly understood [33–36]. 

It is believed that host cells attached to implant fixation surfaces orchestrate the processes leading  

to periprosthetic bone regeneration and remodelling that protect against bacterial colonization [37]. 

However, neither osseointegration nor fibrous tissue encapsulation of large non-fixation parts of  

an implant can eliminate long-term survivorship of bacterial micro-colonies. Moreover, peri-implant 

fibrous barriers can prevent contact between host immunity sentinel cells and bacterial molecules.  

This interaction is critical for host immune responses dependent on recognition of bacterial  

pattern-recognition receptors (PRRs; also microbe associated molecular patterns = MAMPs).  

This cascade goes on to intracellular signal transduction by first-line cell adaptors that organize  

the appropriate host response via particular modules of innate and adaptive immunity [38]. 

Additionally, it has been demonstrated that implantation of a medical device impairs innate local  

host response and may facilitate the development of PJI [39–41]. As a result, there is a strong need  

for intrinsic implant surface antibacterial functionality that can overcome implant-induced defects  

in the local immune response. This is of utmost importance especially in patients with underlying 

compromised immunity [42] and in those undergoing revision surgery [42,43]. 

1.2. Brief Overview of Basic Concepts of PJI Prevention 

Strategies relying on decreased bacterial load and creating bacteria-free environment around  

an implant during the perioperative period are widely implemented in clinical practice [44–47].  

There is sufficient evidence supporting systemic and in some cases local antibiotic prophylaxis [48–50]. 

Attempts at formulating evidence-based standards for good clinical and logistic practice in orthopaedic 

operating rooms have been utilized [7,51–53]. Finally, while there is certainly room for improvement, 

educational programs aimed at educating orthopaedic surgeons (the entire staff) in perioperative 

strategies of PJI prevention are under way. 

1.3. Indications for Implants with Antibacterial Surface Treatment 

An important consideration in designing implants with antibacterial coating relates to the 

characterization of reasonable and justifiable cost [54]. Theoretically all patients undergoing total joint 

arthroplasty are at risk for PJI. Revision cases carry an increased risk in part due to the suboptimal 

local tissue environment [43,55–57]. Moreover, several studies emphasize that the risk of PJI across 

the board in orthopaedic surgery is on the rise [3,58,59]. As a result, one could argue that all patients 

should benefit from implants coated with a proven anti-infective surface. On the other hand, the risk 

for PJI is not homogenously distributed among the arthroplasty patients: it is stratified into the specific 

groups [42,60–63]. Therefore, it might be convincing to implant “biofilm resistant” prostheses only in 

patients at increased risk of PJI. A validated tool for screening patients for increased risk of PJI  

does not currently exist. Despite attempts to identify and stratify patients at risk of PJI [12,42,64–66] 

specific clinical algorithms are not routinely used. In addition, we have no data relevant for 

determining the potential costs associated with wide range usage of such a screening strategy. Taken 

together, the preventative strategy involving all patients undergoing primary and revision total joint 

arthroplasty seems to be more justifiable than a more restrictive approach targeting high risk patients. 
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However, prior to implementation of such devices, it is necessary to demonstrate the significant 

reduction of PJI in a well-done population-based cost-benefit analysis [37]. 

1.4. Rules for Construction of Implants with Anti-Infective Coating 

A wide spectrum of substances and technological approaches has been proposed and tested for 

antibacterial features (Table 1). In order to fully discuss and evaluate surface treatment technologies it 

is essential to review strict criteria related generally to the process of innovation in this field. These are 

as follows: (i) biocompatibility (the ability of a material to perform with an appropriate host response 

in a specific applications) [67]; (ii) strong evidence of anti-infective efficiency (the anti-bacterial 

efficiency should be demonstrated in vitro, in vivo and also in an appropriate model of PJI) [68];  

(iii) fixation properties cannot be compromised (the antibacterial coating must not compromise long-term 

stable implant osseointegration or cement fixation); (iv) durability of the anti-infective effect (while 

clear recommendations are lacking epidemiological viewpoints suggest that at least two years would 

be appreciated) [55,58]; (v) mechanical characteristics of the antibacterial coating (resistance to 

mechanical stresses and strains either during surgery or postoperatively). 

Table 1. Examples of anti-infective strategies proposed for treating of surfaces used in 

orthopaedic surgery. 

Strategy Features Examples References 

Prevention in adhesion  
and adsorption 

 

Anti-adhesive polymers  [68–71] 
Albumin [72] 
Super-hydrophobic surfaces [73–75] 
Nano-patterned surface [76–79] 
Hydrogels [80–83] 

Methods to  
kill bacteria 

Inorganic 

Silver nanoparticles [84–90] 
Titanium dioxide [91–93] 
Selenium ion [94–96] 
Copper ion [97,98] 
Zinc ion [99,100] 

Organic 

Coated or covalently linked antibiotics  [101–105]  
Chitosan derivatives [106–109] 

Signaling, inhibiting and antimicrobial peptides [110–115] 

Cytokines [116]  
Enzymes [117,118] 

Other Non-antibiotic bactericidal substances [119] 

Combined 
Multilayer coating [120–124] 
Synergy material intensification [125] 
Positively charged polymers [126] 

Multi-functional  
and smart coating 

Passive Nanostructured “smart” material [71,127,128] 

Active Concept: sensors conjoined to nanocontainers [129–133] 

Alternative approach  Lytic bacteriophages [134] 
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1.5. General Principles of Thin Surface Modifications 

A change in the surface chemistry and/or structure of the bulk implant can be achieved either by 

chemically or physically altering the surface layer in the existing biomaterial (e.g., oxidation or 

mechanical modifications like roughening/polishing/texturing). A different method involves over-coating 

the existing surface with a new thin layer of material having a different composition (e.g., hydroxyapatite 

coating on titanium alloys, antibiotics bound covalently to the substrate, fixation of other antimicrobial 

compounds) [135]. In terms of durability, we can distinguish between degradable and non-degradable 

biomaterials [136]. 

1.6. Remarks on the Testing of Antibacterial Coatings 

A critical step in progress lies in the demonstration that newly developed biomaterials possess 

antibacterial efficacy [137]. To date there is no widely accepted methodology available that could 

precisely and reproducibly demonstrate antibacterial behaviour of the proposed anti-infective technologies. 

Major criticisms lie around static “closed” testing system whereas in vivo the implant has to face  

a dynamic, continuously changing, mechanically unstable and predominantly fluid environment [138]. 

As a result, the majority of studies to date have used inappropriate and insufficient protocols. 

Controllable, standardized testing conditions that closely mimic the human in vivo environment are 

needed in order to overcome the aforementioned issues [138]. PJIs develop at low shear conditions and 

under multidirectional low-pressure fluid flow. A variety of testing tools have been proposed that 

attempt to simulate conditions of continuous or intermittent fluid-displacement in both low and high 

shear conditions [139]. Protocols for cultivation of particular species (multispecies) biofilms at controllable, 

constant and reproducible conditions have also been described [140]. Finally, representative in vitro 

and in vivo models for each particular clinical situation (i.e., total joint arthroplasty, internal, external 

fixation) should be further developed and appropriately validated. Given the large variability of 

antibacterial strategies it is likely that testing methods must be better tailored to match the specific 

proposed strategy at hand [141]. 

2. Basic Concepts of Antibacterial Coating 

A number of principles from basic research have been proposed for translation into technologies 

potentially suitable for antibacterial treatment of orthopaedic implants. It is currently easy to distinguish 

between technologies offering anti-adhesive properties, those working as antimicrobial agents, and 

those combining above-mentioned approaches. Anti-infective surfaces can be classified as “contact 

killing” and antimicrobial agent eluting [141]. Coatings can also be degradable and non-degradable.  

In terms of functionality, one may choose to divide surfaces into mono-functional and multi-functional. 

The latter are expected to target multiple biological tasks simultaneously (Figure 2). A “smart surface” 

is a completely different methodology designed to be a self-responsive multitask micro-machine that 

releases antimicrobial (and other) substances after stimulation by microbiological (or other) signals. 
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Figure 2. Ideas of multifunctional surfaces in total hip arthroplasty designed to simultaneously 

or successively respond to various biological and mechanical tasks. The response depends 

on the specific abilities of the coatings acquired during the manufacturing process. 

 

2.1. Anti-Adhesive Approaches 

Engineers believe they are able to treat biomaterial surfaces in this manner and that this will prevent 

the critical step of bacterial biofilm formation. As a result, such a strategy could potentially target 

infections related to perioperative contamination of prosthetic surfaces [142]. Some authors believe 

that hydrophilic, highly hydrated, and non-charged surfaces could be a good choice. These surfaces 

have been shown in vitro to prevent many bacterial species from biomaterial adhesion by limiting the 

contact between bacterium and potential surface placement sites [143]. Host cells attachment, however, 

may also be negatively affected by certain surface treatments. While such strategies cannot be used in 

the setting of implants requiring bony ingrowth (such as fixation surfaces in cementless arthroplasty 

implants) they may be appropriate for non-fixation surfaces (plates, screws, or intramedullary nails).  

In addition, it should be mentioned that the basic concept favouring the hydrophilic over the hydrophobic 

forces might be criticised from both the bio-physicochemical misunderstanding of these terms and  

the complexity of biological interactions around an implant [75,138,144–146]. As a result, much more 

attention has been focused recently on hydrophobic and superhydrophobic surface treatment technologies 

and their repellent antibacterial effects [73,147]. 

Treating protein-surfaces and/or protein-bacteria interactions may be a good strategy of inhibiting 

bacterial adhesion to a specific biomaterial [142]. Proteins such as albumin, fibronectin, fibrinogen, 

laminin, denatured collagens, and some plasma/tissue lipids are the first host substances that interact 

with the surface structure of the biomaterial [21,27,148]. Reduction of conditional lipid-protein layer 

formation can be achieved by changing surface physico-chemical characteristics, and/or surface  

micro-morphology [149]. In fact, a number of studies have demonstrated that the biological response 

to biomaterials can be controlled via alterations in surface chemistry and structure [22,35,150,151].  

For instance it has been suggested that implants with rough and porous surface structure are prone to 
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greater bacterial adhesion in comparison to smooth surfaces. This is perhaps due to much larger surface 

area available for adhesion and subsequent higher number of anchor points [152]. Porous cementless 

implants have much larger surface available for bacterial adhesion; some studies report their usage  

is associated with increased risk of infection as compared to cemented ones [153]. However, other 

investigators found similar risk for infection in relation to the type of total hip arthroplasty fixation [154]. 

This could point paradoxically to the complexity of the clinical situation where a myriad of factors 

participate in PJI pathogenesis and surface roughness is only one of many, implant related characteristics. 

At the nanometre scale, bacterial adhesion does not simply follow the roughness of the surface but also 

is dependent on other variables like the quantity of adsorbed proteins. When roughness increases, the 

formation of a thick protein layer on such implant surface could suppress bacteria adhesion [77].  

In addition, the adhesion process can be different among the materials with different surface structure 

in terms of short-range van der Waals interactions and surface energy (Figure 3), [19,155–158]. 

Figure 3. The relationship between biomaterial surface roughness/chemistry and bacterial 

attachment is intricate. Bacterial attachment is facilitated by increased surface microscale 

roughness since larger surface areas (especially when irregular) provide binding sites and 

protection. Increased smoothness of the surface should prevent bacterial colonization.  

A similar scenario is found with corrosion associated surface micro-cracks that are prone  

to infection. On the other hand, exceptionally smooth materials can increase the bacterial 

attachment via physical forces such as van der Waals interactions (double rows) and by 

providing a number of molecular contact points. 

 

To date a number of anti-adhesive tactics have been proposed for different purposes. Only a few, 

however, have met the elementary features required for bone implant usage. Friedman et al. using  

a rabbit model, demonstrated reduced bacterial adherence on pure titanium samples and decreased 

infection rates of implants coated with cross-linked albumin [72,159]. Surprisingly, this model has not 

been further pursued. More recent strategies include production of self-assembled mono- or multilayers, 

surface grafting, or hydrogels [142]. Importantly, the level of anti-adhesive properties has to respect 

the purpose of a particular type of orthopaedic implant surface (i.e., whether surfaces are intended for 

total joint arthroplasty, internal fixation, external fixators). Specifically, a strong anti-adhesive layer 

cannot be used for coating of fixation surfaces of total joint arthroplasty because it could also prevent 

host bone osseointegration and lead to early mechanical failure. The solution lies in a coating technology 

that retains required host cell interactions while selectively inhibiting bacterial adhesion. [160]. It was 

found that specific changes of a surface morphology at the micro- and nanometre scales might influence 

not only the bacterial adhesion but also biofilm phenotype conversion [155,157,161–163]. As a result, 
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nanopatterning and other surface treatment nanotechnologies can offer new opportunities for development 

of effective anti-adhesive treatment in orthopaedic implants [156,164]. 

Taken together, anti-adhesive technologies offer attractive opportunities for engineers and collaborating 

researchers to develop a prosthetic surface that should ultimately diminish PJI rates. This approach 

does however have some important limitations. Cementless arthroplasty implants that require host bone 

integration may not be amenable to such coatings. The process of unifying ongrowth or ingrowth with 

antibacterial anti-adhesive functionality as part of a surface coating is technically demanding and has 

not been fully elucidated. Another challenge of designing antiadhesive technologies relates to the current 

inability to design a universal surface treatment that can be applied to all surfaces, all bacterial species, 

and under all (ingrowth and noningrowth) implants. 

2.2. Surfaces with Intrinsically Antibacterial Properties 

Historically, two main strategies have been proposed for effective antibacterial surface treatment 

either “contact killing” or drug eluting. The majority of them are not suitable for surface treatment of 

orthopaedic implants due to problems with cytotoxicity, immunoreactivity, and genotoxicity [165–168]. 

In killing bacteria they rely on diverse mechanisms of action, which may interfere with a cell respiration, 

cell division, or formation of a cell wall (Figure 4). Another very promising approach involves interference 

of the bacterial signalling network (e.g., quorum sensing) or inhibition of the transition of planktonic 

phenotype of bacteria into a sessile type [138]. This tactic could prolong the window of opportunity for 

both prophylactic antibiotic activity and the host immune response. 

Antibacterial surface technologies can employ metals (silver, zinc, copper, zirconium etc.), non-metal 

elements (e.g., selenium), organic substances (antibiotics, anti-infective peptides, chitosan, other 

substances), and their combinations. 

Figure 4. Potential mechanisms by which antibacterial substances kill bacteria; critical 

targets include bacterial cells genome, metabolic and respiration pathways, cell envelope 

synthesis and membrane disruptors (e.g., reactive oxygen species). 
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2.2.1. Coating of Implant Surface by Anti-Infective Metals 

Antibacterial activity of the majority of metal coatings is closely linked to the ionic or nano form 

rather than to the bulk material [169]. Despite extensive research, routine coating of implants with  

such a thin layer of metal is still not the standard [170]. The main obstacles preventing broader usage 

of such technologies are cytotoxicity and resultant decreased biocompatibility. In addition, creating  

a coating-substrate interface robust enough to sustain the mechanical stresses involved in surgical 

implant insertion and ultimate loading once in vivo remains a challenge [171]. Lastly, the risk of bacterial 

resistance to metallic coatings, a phenomenon common to all antibacterial strategies, remains a concern. 
Silver is the most prevalent metal used in biomedical applications. Dissolved silver cations are 

biochemically active agents that interfere with bacterial cell membrane permeability and cellular 

metabolism. Silver also contributes to formation of reactive oxygen species and other mechanisms that 

potentially influence prokaryotic cells [172]. There has been concern, however, about the toxicity of 

silver ions. Even in minute levels silver can adversely affect surrounding cells and lead to potentially 

harmful accumulation in distant locations [173]. Research efforts have focused on the development of 

silver coating technologies that reduce or even eliminate toxicity while maintaining constructive 

antibacterial effects [174,175]. Panacek et al. showed that ionic silver inhibited the growth of the 

Candida albicans at concentrations comparable to levels (approximately 1 mg/L) that were cytotoxic 

against human fibroblasts. In contrast, silver nanoparticles (see Section 2.2.4.) effectively inhibited the 

growth of the tested yeasts at concentrations below the cytotoxic limit against human fibroblasts  

(30 mg/L) [176]. 

Copper and zinc are trace metals involved in multiple enzymatic and cellular processes. These metals 

also have potent antibacterial effects on a wide spectrum of bacterial species [169,177,178]. The ability 

of bacteria to survive around copper compounds depends on the expression of copper tolerance  

genes [179]. The same pathways are required for certain bacterial species to survive innate immune attacks. 

Potential toxic side effects of these metals remain a strong concern [98,180]. Potential solutions may 

incorporate copper- and zinc-based nanomaterials or, alternatively, more controlled release of these 

metals in conjunction with other surface infection control strategies [181,182]. 

Cobalt-chrome and titanium alloys are the most commonly used materials in total joint arthroplasty 

implants. Several technologies have been proposed to expand the antibacterial properties of these 

implants [183]. Functionalization of biomaterial surfaces with silver and copper ions is one such 

method [171,175,184]. The anti-infective potential of titanium dioxide layers has also been widely 

investigated both alone [185,186] or in combination with other substances [100,187]. This concept has 

been tested in external fixator pins that are particularly prone to infection [91,92]. In one study, silver 

coated pins were compared to uncoated ones. While the rate of bacterial colonization was slightly 

lower in the silver coated pins, the differences were not significant. More importantly, the patients  

with silver coated pins exhibited a significant increase in serum silver levels and the study required 

termination [188]. Great expectations are associated with polyetheretherketone (PEEK) implants. 

These implants could become immune to bacterial colonization by employing the chelate-bonding 

ability of inositol phosphate to immobilize silver ions on the hydroxyapatite film of the PEEK 

substrate [189]. Such implants are not currently available in the joint arthroplasty field. 
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2.2.2. Non-Metal Elements with Antibacterial Properties for Implant Surface Treatment 

Non-metal elements like hydrogen, chlorine, iodine, or oxygen are commonly used in biomedicine 

for their anti-infective properties. They have been rarely indicated as antibacterial coating technologies in 

orthopaedic implants due to their general softness and brittleness. Selenium bound covalently onto the 

surface of titanium or titanium alloy implant discs have been shown to prevent Staphylococcus aureus 

and Staphylococcus epidermidis attachment without affecting osteoblast viability [94]. Selenium 

catalyzes the formation of superoxide radicals and subsequently inhibits bacterial adhesion and viability. 

In addition, selenium nanoparticles can inhibit bacterial growth and biofilm formation [95,190]. Ongoing 

research is needed to determine the clinical applicability of carbon substances like graphene or carbon 

nanotubes that can be synthesized in multifunctional layers [191]. 

2.2.3. Antibacterial Coatings of Organic Origin 

A large number of studies have investigated the efficacy of surfaces coated with covalently linked 

antibiotics (Figure 5), [102,192–195]. Clinical effectiveness of such implants is most likely limited  

to infections caused by bacteria that are sensitive to the specific antibiotic that has been coupled.  

In addition, strong forces such as covalent binding are insufficiently sensitive to react to weak external 

stimuli [133]. To overcome these issues, combinations of antibiotics with other compounds have been 

proposed either alone or in association with a particular mechanism of controlled release [196]. 

Figure 5. Two examples of antibacterial effect located on the surface of an implant. The first 

example demonstrates Vancomycin linkage to a carrier polymer; the second example 

shows tethered cationic antimicrobial peptides creating a contact killing surface utilizing 

recombinant human β-defensin-2 (rHUβD2). 

 

A promising new approach for prevention of implant-related infection involves coating implants 

with antimicrobial peptides, cytokines or other molecules critical for host response to bacteria  

invasion [116,119,142,197,198]. This heterogeneous group of substances has proven experimentally 

their efficacy against a wide range of pathogens [199]. They employ a number of mechanisms, pathways, 

and targets that participate in implant bacterial invasion including those related to local deficiency in 

immune response induced by surgical approach or the implant insertion method itself. Antimicrobial 

peptides, like antibiotics, function via damage of the cell wall and inhibition of key bacterial protein 
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synthesis. In addition, they exert influence upon inflammation, tissue healing, and apoptotic  

events [200,201]. Notably, resistance to antimicrobial peptides has been reported less frequently than 

to antibiotics [202]. Initial experiments demonstrated that a thin layer of antimicrobial peptides affixed 

onto the surfaces of orthopaedic (dental) metal alloys exhibit excellent antibacterial effects against 

typical pathogens related to PJI [203–207]. In addition, it has been demonstrated in a rat model that an 

interleukin-12 nanocoating substantially decreased infection rates [116,208]. Other immunomodulatory 

proteins such as chemokines can also exhibit antimicrobial activities [199]. The possibility of 

multifunctional layers (targeting both the tissues homeostasis maintenance and infection) may  

become reality. 

Recently, molecules and compounds that interfere with the expression of various bacterial phenotypes 

have shown great promise [114,209–212]. In the field of PJIs, weapons aimed at Staphylococcal 

bacteria are the most valuable. In this line, the autoinducer two (AI2) signaling peptides, RNAIII-inhibiting 

peptide (RIP), or dihydropyrrolones might be potential candidates for total joint arthroplasty surface 

treatment [113,213–215]. A very promising set of new molecules called biofilm disruptors has been 

discovered recently [216]. They might not only protect an implant surface from biofilm formation but 

also disrupt existing biofilms. However, in contrast to local delivery of antibiotics, the optimal doses 

and surface pharmacokinetics of above-mentioned substances need to be determined. To our knowledge, 

we are not aware of any orthopaedic experimental models that test these aforementioned technologies. 

Chitosan (CS) is a polycationic polymer derived from chitin that exhibits antibacterial and 

antifungal activity. The exact mechanism of action remains poorly understood. Some studies found 

that macrophages are more effective when working on chitosan surface [217]. Derivatives of CS have 

recently been widely studied in relation to antibacterial usage in biomedicine. One such compound, 

quaternized CS, has shown strong antibacterial activity against both Gram-positive and Gram-negative 

bacteria [109]. The mechanism of action involves bacterial surface adhesion deterrence as well as 

inhibition of transcription factors required for production of extracellular matrix [218,219]. There is 

some evidence that CS derivatives can be firmly anchored to titanium alloys and that they have a 

protective effect against some bacterial species either alone or in combination with other antimicrobial 

substances like antibiotics or antimicrobial peptides [112,218,220–222]. CS derivatives secured to external 

fixator pins have been studied as a method of preventing pin tract infections [223]. However, we are 

not aware a study to date reporting data from clinical setting. Several studies also investigated the 

potential of CS derivatives in the form of nanoparticles to protect bone cement (polymethylmethacrylate) 

against bacterial colonization and biofilm formation [219,224]. 

2.2.4. Nanostructured Surfaces and Coatings 

Nanostructured surfaces and coatings (either inorganic or organic origin) are currently of  

great interest [225–227]. Consequently, nanoscale surface patterning methods have been applied to 

fabricate different nanopatterns (e.g., ordered stripes, pits, pillars or squares). Several studies have 

demonstrated that nanopatterning in conjunction with other surface treatment could inhibit bacterial 

adhesion [101,157,228–230]. 

Another example of nanotechnology application is fabrication of polymers containing antibacterial 

nanoparticles and substances that inhibit both the quiescent and sessile bacteria [231]. Synthetic polymers, 
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natural polymers, and their derivatives (e.g., gelatin, chitosan) have potential to be used as implant 

surface scaffolds and delivery vehicles of antibacterial agents [82,232–235]. 

The antibacterial effect of silver nanoparticles (NP) is not fully understood to date. It might be 

based on the release of silver cations from nanostructured surfaces (Figure 6). These cations permanently 

disrupt bacterial cell wall, inactivate essential proteins, cause DNA condensation, and lead to reacting 

oxygen species generation [90,125,236]. The antibacterial activity of the silver NPs is dependent on 

both size and shape. Differences in the mechanism of action of diverse forms of silver may explain 

why to date there have been no reports of resistance to this type of antibacterial treatment [89,235].  

As compared to non-nanoscale silver applications, a nanoscale form offers simultaneously greater 

solubility, chemical reactivity, and strong antibacterial activity even at low concentrations (units of 

milligrams per liter), [176,237,238]. Silver NPs have been shown to cover a wide spectrum of causative 

bacteria [239,240]. Moreover, in vitro and in vivo experiments have shown long-lasting antibacterial 

protective effects of nanostructured titanium coating incorporated with silver NPs [84,241].  

Intense research is being done to combine both the antibacterial effect of silver NP with osteointegrative 

properties and improved biocompatibility of materials such as titanium alloys [87,187,242–244].  

Lastly, nanoparticles of selenium, copper, zinc, and other elements have also demonstrated strong 

antibacterial efficacy [245–247]. 

Figure 6. Plasma-surface modification techniques creating a special type of antimicrobial 

surface involving silver (Ag) nanoparticles embedded into titanium (Ti); it is proposed  

that Ag and Ti represent a micro-galvanic pair with different potentials in the presence of 

electrolyte solution; the cathodic reaction will create a proton-depleted region between 

bacterial membrane and Ti substrate, which leads to disruption of the adenosine triphosphate 

synthesis and bacteria death. 

 

Taken together, nanotreatment of biomaterial surfaces offers new opportunities for periprosthetic 

joint infection prevention. Early studies have shown high biocompatibility of such approaches and 

therefore great potential for use in surface treatment of orthopaedic implants [107,225,248–250].  

It should be cautioned, however, that nanotechnologies can also induce unintended inflammatory 

responses related to activation of dendritic cells and macrophages [251]. Concern also exists about the 

mechanical properties of implant nanocoatings since damage may occur during surgical implantation, 
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especially in cementless implants inserted via press-fit methods [252]. Methods describing the nanosilver 

coating of medical device in orthopaedics and traumatology have been patented in both the United 

States and in the European Union. Implants covered by a nanosilver coating are not currently available 

in clinical practice. At least two manufacturers in Germany, however, already produce on request total 

joint arthroplasties treated by a galvanic deposition of elementary silver. Initial clinical experiences 

with these “custom made” implants are promising [253,254]. 

3. Multifunctional and Smart Coatings 

Multifunctional surface layers have been developed in an effort to coalesce the need for implants 

possessing anti-infective properties (see Section 1.4.) with much needed maintenance of perioperative 

tissue homeostasis. Along these lines a functional polymer brush coating has been proposed.  

This model is composed of an anti-adhesive molecule that repels bacteria, an antimicrobial peptide that 

kills bacterial upon contact, and a substance containing arginine-glycine-aspartate that enhances tissue 

integration [71]. Several other technologies for multifunctional surfaces have been proposed and  

tested [107,255,256]. Because none of these coating methods can address all criteria defined for  

anti-infective surface treatment of medical devices intended for long-term usage in orthopaedic surgery 

(see part 1.4) it has been difficult to implement experimental and preclinical studies. 

Development of multifunctional, self-responsive, and self-repairing biomaterials is becoming one  

of the most intense areas of anti-infective translational research. “Smart coatings” are designed to be 

sensitive and responsive to a variety of stimuli such as bacteria [127,129,133]. It is anticipated that 

these coatings respond intelligently to signaling based on how they are prepared (Figure 7). Accordingly, 

smart coatings should possess synergistic passive and active functionalities (e.g., anticorrosive, 

homeostatic, antiosteoclastic, antibacterial, antifungal). Some of the challenges encountered during 

development of these smart coatings have included: survivorship during the implant-coating manufacturing 

process, non-adverse reactions to the smart coatings themselves in vivo, mechanical resistance, and 

preservation of intended functionalities throughout the life of the device [128,133,257,258]. 

Figure 7. Smart coatings continuously screen the local effective space using molecular 

receptors specific to a surrounding target’s signals. Stimulation of target-sensitive receptors 

triggers a cascade of events resulting in outflow of specific substance(s) that affect  

the target. 
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A critical component of a smart micro-device is a sensor unit sensitive enough to detect even the 

most minute microbial-associated signals. Development of nanocontainers with sensitive shells, high 

loading capacity, and good affinity for the coating matrix has also been challenging [259,260]. 

Nanocontainer shell entryway signals include pH, temperature, as well as mechanical, chemical, and 

electrical (electrochemical) changes in the peri-implant effective space [132,133,259]. Stimulation should 

lead to opening of the nanocontainers and release of specific substance(s). 

4. Translation of Anti-Infective Coatings into the Clinical Practice 

Examination of global grants and published studies on this topic suggests a striking discrepancy 

between proposed strategies of antibacterial surface treatment and ultimate completion of in vitro and 

in vivo experimentation. In fact, we believe that very little progress has actually been made in the 

translation of the aforementioned modalities into clinically useful technologies. Barriers to translational 

medicine in this arena are most likely related to economic, medicolegal, and biotechnological issues. 

Concerns about the long-term durability of such new implants as compared to traditional implants are 

also realistic. Leaders in this field have recently proposed that in order for some of these obstacles to 

be overcome we must improve efficiency and effectiveness amongst all partners involved. Only by 

improving collaborative efforts amongst governments, regulatory agencies, industry leaders and health 

care payers will patients benefit from these technologies [261]. While pressures exist worldwide to 

diminish the incidence of PJIs, surprisingly there is not a single large clinical study examining the role 

of broad-range implementation of implants containing antibacterial surface treatments. 

5. Conclusions 

There is no doubt that prevention is the best response to the growing problem of orthopaedic 

implant infections. Research in the field of antibacterial surface treatment has demonstrated in vitro 

and in vivo effectiveness of several potentially promising technologies. Some interfere with bacterial 

adhesion and with the initial phases of the biofilm formation. Others exhibit direct antibacterial 

properties. Strategies incorporating nanopatterning and other nanotechnologies have also shown great 

promise. In the future, multifunctional smart surfaces could open new avenues for prevention of 

bacterial attachment while simultaneously enhancing healing and restoration of tissue homeostasis. 

Issues related to the mechanical properties of these technologies and the potential for detrimental side 

effects such as toxicity and interference with osseointegration require further investigation. It is of 

utmost importance to realize, however, that some of the aforementioned technologies have already 

shown strong enough evidence of antibacterial efficacy, safety, and endurance. The time is here for 

more efficient development and testing of these technologies in the clinical setting. 
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